(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Embodied water analysis for Hebei Province, China by input-output modelling
【刊名】 Frontiers of Earth Science
【刊名缩写】 Front. Earth Sci.
【ISSN】 2095-0195
【EISSN】 2095-0209
【DOI】 10.1007/s11707-016-0614-z
【出版社】
【出版年】 2018
【卷期】 12 卷1期
【页码】 72-85 页,共 14 页
【作者】 Siyuan LIU; Mengyao HAN; Xudong WU; Xiaofang WU; Zhi LI; Xiaohua XIA; Xi JI;
【关键词】 input-output analysis|Hebei Province|embodied water|embodied water intensity

【摘要】

With the accelerating coordinated development of the Beijing-Tianjin-Hebei region, regional economic integration is recognized as a national strategy. As water scarcity places Hebei Province in a dilemma, it is of critical importance for Hebei Province to balance water resources as well as make full use of its unique advantages in the transition to sustainable development. To our knowledge, related embodied water accounting analysis has been conducted for Beijing and Tianjin, while similar works with the focus on Hebei are not found. In this paper, using the most complete and recent statistics available for Hebei Province, the embodied water use in Hebei Province is analyzed in detail. Based on input-output analysis, it presents a complete set of systems accounting framework for water resources. In addition, a database of embodied water intensity is proposed which is applicable to both intermediate inputs and final demand. The result suggests that the total amount of embodied water in final demand is 10.62 billion m3, of which the water embodied in urban household consumption accounts for more than half. As a net embodied water importer, the water embodied in the commodity trade in Hebei Province is 17.20 billion m3. The outcome of this work implies that it is particularly urgent to adjust industrial structure and trade policies for water conservation, to upgrade technology and to improve water utilization. As a result, to relieve water shortages in Hebei Province, it is of crucial importance to regulate the balance of water use within the province, thus balancing water distribution in the various industrial sectors.

版权所有 © CALIS管理中心 2008