(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Modeling grain protein formation in relation to nitrogen uptake and remobilization in rice plant
【刊名】 Frontiers of Agriculture in China
【刊名缩写】 Front. Agric. China
【ISSN】 1673-7334
【EISSN】 1673-744X
【DOI】 10.1007/s11703-007-0002-2
【出版社】 Higher Education Press and Springer-Verlag
【出版年】 2007
【卷期】 1 卷1期
【页码】 8-16 页,共 9 页
【作者】 ZHU Yan; LI Weiguo; JING Qi; CAO Weixing; Takeshi Horie;
【关键词】 rice; grain protain formation; nitrogen uptake; simulation model

【摘要】
Protein concentration of grain is an important quality index of rice, and formation of grain protein largely depends on pre-anthesis nitrogen assimilation and post-anthesis nitrogen remobilization in the rice plant. The primary objective of this study was to develop a simplified process model for simulating nitrogen accumulation and remobilization in plant and protein formation in rice grains on the basis of an established rice growth model. Six field experiments, involving different years, eco-sites, varieties, nitrogen rates, and irrigation regimes, were conducted to obtain the necessary data for model building, genotypic parameter determination, and model validation. Using physiological development time (PDT) as general time scale of development progress and cultivar-specific grain protein concentration as genotypic parameter, the dynamic relationships of plant nitrogen accumulation and translocation to environmental and genetic factors were quantified and synthesized in the present model. The pre-anthesis nitrogen uptake rate by plant changed with the PDT in a negative exponential pattern, and post-anthesis nitrogen uptake rate changed with leaf area index (LAI) in an exponential equation. Post-anthesis nitrogen translocation rate depended on the plant nitrogen concentration and dry weight at anthesis as well as residue nitrogen concentration of plant at maturity. The nitrogen for protein synthesis in grains came from two sources: the nitrogen pre-stored in leaves, stem and sheath before anthesis and then remobilized after anthesis, and the nitrogen absorbed directly by plant after anthesis. Finally, the model was tested by using the data sets of different years, eco-sites, varieties, and N fertilization and irrigation conditions with the root mean square errors (RMSE) 0.22%–0.26%, indicating the general and reliable features of the model. It is hoped that by properly integrating with the existing rice growth models, the present model can be used for predicting grain protein concentration and grain protein yield of rice under various environments and genotypes.
版权所有 © CALIS管理中心 2008