(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Hybridization effect in coupled metamaterials
【刊名】 Frontiers of Physics in China
【刊名缩写】 Front. Phys. China
【ISSN】 1673-3487
【EISSN】 1673-3606
【DOI】 10.1007/s11467-010-0101-z
【出版社】 Higher Education Press and Springer-Verlag Berlin Heidelberg
【出版年】 2010
【卷期】 5 卷3期
【页码】 277-290 页,共 14 页
【作者】 Hui LIU(刘辉); Tao LI(李涛); Shu-ming WANG(王漱明); Shi-ning ZHU(祝世宁);
【关键词】 metamaterial; plasmon; negative refraction; hybridization effect

【摘要】
Although the invention of the metamaterials has stimulated the interest of many researchers and possesses many important applications, the basic design idea is very simple: composing effective media from many small structured elements and controlling its artificial EM properties. According to the effective-media model, the coupling interactions between the elements in metamaterials are somewhat ignored; therefore, the effective properties of metamaterials can be viewed as the “averaged effect” of the resonance property of the individual elements. However, the coupling interaction between elements should always exist when they are arranged into metamaterials. Sometimes, especially when the elements are very close, this coupling effect is not negligible and will have a substantial effect on the metamaterials’ properties. In recent years, it has been shown that the interaction between resonance elements in metamaterials could lead to some novel phenomena and interesting applications that do not exist in conventional uncoupled metamaterials. In this paper, we will give a review of these recent developments in coupled metamaterials. For the “metamolecule” composed of several identical resonators, the coupling between these units produces multiple discrete resonance modes due to hybridization. In the case of a “metacrystal” comprising an infinite number of resonators, these multiple discrete resonances can be extended to form a continuous frequency band by strong coupling. This kind of broadband and tunable coupled metamaterial may have interesting applications. Many novel metamaterials and nanophotonic devices could be developed from coupled resonator systems in the future.
版权所有 © CALIS管理中心 2008