(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Simultaneous removal of arsenate and fluoride from water by Al-Fe (hydr)oxides
【刊名】 Frontiers of Environmental Science and Engineering in China
【刊名缩写】 Front.Environ.Sci.Engin.China
【ISSN】 2095-2201
【EISSN】 2095-221X
【DOI】 10.1007/s11783-013-0533-0
【出版社】 Higher Education Press and Springer-Verlag Berlin Heidelberg
【出版年】 2014
【卷期】 8 卷2期
【页码】 169-179 页,共 11 页
【作者】 Junlian QIAO; Zimin CUI; Yuankui SUN; Qinghai HU; Xiaohong GUAN;
【关键词】 Al-Fe (hydr)oxides; groundwater; adsorption; hydroxyl group; ligand exchange

【摘要】
Al-Fe (hydr)oxides with different Al/Fe molar ratios (4∶1, 1∶1, 1∶4, 0∶1) were prepared using a co-precipitation method and were then employed for simultaneous removal of arsenate and fluoride. The 4Al:Fe was superior to other adsorbents for removal of arsenate and fluoride in the pH range of 5.0–9.0. The adsorption capacity of the Al-Fe (hydr)oxides for arsenate and fluoride at pH 6.5±0.3 increased with increasing Al content in the adsorbents. The linear relationship between the amount of OH? released from the adsorbent and the amount of arsenate or fluoride adsorbent by 4Al:Fe indicated that the adsorption of arsenate and fluoride by Al-Fe (hydr)oxides was realized primarily through quantitative ligand exchange. Moreover, there was a very good correlation between the surface hydroxyl group densities of Al-Fe (hydr)oxides and their adsorption capacities for arsenate or fluoride. The highest adsorption capacity for arsenate and fluoride by 4Al:Fe is mainly ascribed to its highest surface hydroxyl group density besides its largest pHpzc. The dosage of adsorbent necessary to remove arsenate and fluoride to meet the drinking water standard was mainly determined by the presence of fluoride since fluoride was generally present in groundwater at much higher concentration than arsenate.
版权所有 © CALIS管理中心 2008