(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Investigation on sampling artifacts of particle associated PAHs using ozone denuder systems
【刊名】 Frontiers of Environmental Science and Engineering in China
【刊名缩写】 Front.Environ.Sci.Engin.China
【ISSN】 2095-2201
【EISSN】 2095-221X
【DOI】 10.1007/s11783-013-0555-7
【出版社】 Higher Education Press and Springer-Verlag Berlin Heidelberg
【出版年】 2014
【卷期】 8 卷2期
【页码】 284-292 页,共 9 页
【作者】 Kai LIU; Fengkui DUAN; Kebin HE; Yongliang MA; Yuan CHENG;
【关键词】 particle associated polycyclic aromatic hydrocarbons (PAHs); ozone; denuder; sampling artifacts

【摘要】
Polycyclic aromatic hydrocarbons (PAHs) are complex organic compounds which are identified as significant carcinogenic to human health. PAHs (mainly in particle phase) are susceptible to atmospheric oxidant gases, especially ozone, nitrogen oxides (NOx), hydroxyl radical (OH), and could be degraded on filters during sampling process, leading to an underestimation of ambient PAH concentrations. The goal of this work was to investigate particle associated PAHs sampling artifacts caused by ozone in summer of Beijing. Comparative sampling systems were operated simultaneously during the whole campaign, one with activated carbon ozone denuder, the other being set as conventional sampling system. Activated carbon denuder was testified to be highly efficient to eliminate ozone from air stream. In general, nine particle-bound PAHs observed from conventional sampler were all lower than those from ozone denuder system. The total PAHs (particle phase) concentration was averagely underestimated by 35.9% in conventional sampling procedure. Benzo[a]pyrene (BaP) had the highest percentage of mass loss. Ambient temperature was founded to have influences on PAHs sampling artifacts. High temperature can increase loss of particle associated PAHs during sampling.
版权所有 © CALIS管理中心 2008