(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Quantum tunneling of ultracold atoms in optical traps
【刊名】 Frontiers of Physics
【刊名缩写】 Front. Phys
【ISSN】 2095-0462
【EISSN】 2095-0470
【DOI】 10.1007/s11467-013-0359-z
【出版社】 Higher Education Press and Springer-Verlag Berlin Heidelberg
【出版年】 2014
【卷期】 9 卷2期
【页码】 137-152 页,共 16 页
【作者】 Jian-; Hua Wu; Ran Qi; An-; Chun Ji; Wu-; Ming Liu;
【关键词】 quantum tunneling; Josephson effect; Landau–Zener tunneling; atom-cavity

【摘要】
We review our theoretical advances in quantum tunneling of Bose–Einstein condensates in optical traps and in microcavities. By employing a real physical system, the frequencies of the pseudo Goldstone modes in different phases between two optical traps are studied respectively, which are the crucial feature of the non-Abelian Josephson effect. When the optical lattices are under gravity, we investigate the quantum tunneling in the “Wannier–Stark localization” regime and “Landau–Zener tunneling” regime. We finally get the total decay rate and the rate is valid over the entire range of temperatures. At high temperatures, we show how the decay rate reduces to the appropriate results for the classical thermal activation. At intermediate temperatures, the results of the total decay rate are consistent with the thermally assisted tunneling. At low temperatures, we obtain the pure quantum tunneling ultimately. And we study the alternating-current and direct-current (ac and dc) photonic Josephson effects in two weakly linked microcavities containing ultracold two-level atoms, which allows for direct observation of the effects. This enables new investigations of the effect of many-body physics in strongly coupled atom-cavity systems and provides a strategy for constructing novel interference devices of coherent photons. In addition, we propose the experimental protocols to observe these quantum tunneling of Bose–Einstein condensates.
版权所有 © CALIS管理中心 2008