(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Cation exchange resin supported nanoscale zero-valent iron for removal of phosphorus in rainwater runoff
【刊名】 Frontiers of Environmental Science & Engineering
【刊名缩写】 Front.Environ.Sci.Eng.
【ISSN】 2095-2201
【EISSN】
【DOI】 10.1007/s11783-013-0575-3
【出版社】
【出版年】 2014
【卷期】 8 卷3期
【页码】 463-470 页,共 8 页
【作者】 XIE Bangmi; ZUO Jiane; GAN Lili; LIU Fenglin; WANG Kaijun;
【关键词】 nanoscale zero-valent iron(R-nZVI)|cation exchange resin|rainwater runoff|phosphorus adsorption

【摘要】

Self-made cation exchange resin supported nanoscale zero-valent iron (R-nZVI) was used to remove phosphorus in rainwater runoff. 80% of phosphorus in rainwater runoff from grassland was removed with an initial concentration of 0.72 mg·L–1 phosphorus when the dosage of R-nZVI is 8 g per liter rainwater, while only 26% of phosphorus was removed when using cation exchange resin without supported nanoscale zero-valent iron under the same condition. The adsorption capacity of R-nZVI increased up to 185 times of that of the cation exchange resin at a saturated equilibrium phosphorous concentration of 0.42 mg·L–1. Various techniques were implemented to characterize the R-nZVI and explore the mechanism of its removal of phosphate. Scanning electron microscopy (SEM) indicated that new crystal had been formed on the surface of R-nZVI. The result from inductive coupled plasma (ICP) indicated that 2.1% of nZVI was loaded on the support material. The specific surface area was increased after the load of nanoscale zero-valent iron (nZVI), according to the measurement of BET-N2 method. The result of specific surface area analysis also proved that phosphorus was removed mainly through chemical adsorption process. X-ray photoelectron spectroscopy (XPS) analysis showed that the new product obtained from chemical reaction between phosphate and iron was ferrous phosphate.

版权所有 © CALIS管理中心 2008