(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Speciation evolutions of target metals (Cd, Pb) influenced by chlorine and sulfur during sewage sludge incineration
【刊名】 Frontiers of Environmental Science & Engineering
【刊名缩写】 Front. Environ. Sci. Eng.
【ISSN】 2095-2201
【EISSN】
【DOI】 10.1007/s11783-013-0621-1
【出版社】
【出版年】 2014
【卷期】 8 卷6期
【页码】 871-876 页,共 6 页
【作者】 Jingde LUAN; Rundong LI; Zhihui ZHANG; Yanlong LI; Yun ZHAO;
【关键词】 sludge incineration|heavy metals|inner speciation redistribution|binding energy

【摘要】

In sludge incineration, the thermal behavior of heavy metal is a growing concern. In this work, the combined analysis of metal partitioning behavior between vapor phase and condensed phase, speciation redistribution in condensed phase and the difference of metal species in binding energy was carried out to investigate the possible volatilization-condensation mechanism of heavy metals in high-temperature sludge incineration. It was found that there were two steps in metal volatilization. The initial volatilization of heavy metal originated from their exchangeable (EXC), carbonate bound (CAR) and iron–manganese bound (FM) fractions, which is primarily composed of simple substance, chlorides, oxides and sulfides. With the increase of chlorine and sulfur in sludge, the inner speciation redistribution of heavy metals occurred in condensed phase, which was an important factor affecting the potential volatility of heavy metals. A partial of metal species with complexed (COM) and residual (RES) fractions gradually decomposed into simple substance or ions, oxides and carbonates, which significantly strengthened the second volatility. In presence of chlorine, about 46% of Cd with the RES fraction disappeared when the volatility rate of Cd increased by 44.89%. Moreover, about 9% of Pb with COM fraction disappeared when there was an increase of nearly 10% in the volatilization rate. Thus, the second volatilization was mainly controlled by the decomposition of metal species with COM and RES fractions. By virtue of XRD analysis and the binding energy calculation, it was found that metal complex and silicates were inclined to decompose under high temperature due to poor thermo stability as compared with sulfates.

版权所有 © CALIS管理中心 2008