(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Improvement of nitrification efficiency by bioaugmentation in sequencing batch reactors at low temperature
【刊名】 Frontiers of Environmental Science & Engineering
【刊名缩写】 Front. Environ. Sci. Eng.
【ISSN】 2095-2201
【EISSN】
【DOI】 10.1007/s11783-014-0668-7
【出版社】
【出版年】 2014
【卷期】 8 卷6期
【页码】 937-944 页,共 8 页
【作者】 Di CUI; Ang LI; Tian QIU; Rui CAI; Changlong PANG; Jihua WANG; Jixian YANG; Fang MA; Nanqi REN;
【关键词】 nitrification|sequencing batch reactors (SBRs)|bioaugmentation|low temperature

【摘要】

Bioaugmentation is an effective method of treating municipal wastewater with high ammonia concentration in sequencing batch reactors (SBRs) at low temperature (10°C). The cold-adapted ammonia- and nitrite- oxidizing bacteria were enriched and inoculated, respectively, in the bioaugmentation systems. In synthetic wastewater treatment systems, the average NH4+-N removal efficiency in the bioaugmented system (85%) was much higher than that in the unbioaugmented system. The effluent NH4+-N concentration of the bioaugmented system was stably below 8 mg·L-1 after 20 d operation. In municipal wastewater systems with bioaugmentation, the effluent NH4+-N concentration was below 8 mg·L-1 after 15 d operation. The average NH4+-N removal efficiency in unbioaugmentation system (about 82%) was lower compared with that in the bioaugmentation system. By inoculating the cold-adapted nitrite-oxidizing bacteria (NOB) into the SBRs after 10 d operation, the nitrite concentration decreased rapidly, reducing the NO2--N accumulation effectively at low temperature. The functional microorganisms were identified by PCR-DGGE, including uncultured Dechloromonas sp., uncultured Nitrospira sp., Clostridium sp. and uncultured Thauera sp. The results suggested that the cold-adapted microbial agent of ammonia-oxidizing bacteria (AOB) and NOB could accelerate the start-up and promote achieving the stable operation of the low-temperature SBRs for nitrification.

版权所有 © CALIS管理中心 2008