(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 A potentiometric cobalt-based phosphate sensor based on screen-printing technology
【刊名】 Frontiers of Environmental Science & Engineering
【刊名缩写】 Front. Environ. Sci. Eng.
【ISSN】 2095-2201
【EISSN】
【DOI】 10.1007/s11783-013-0615-z
【出版社】
【出版年】 2014
【卷期】 8 卷6期
【页码】 945-951 页,共 7 页
【作者】 Lei ZHU; Xiaohong ZHOU; Hanchang SHI;
【关键词】 phosphate|cobalt|screen-printing technology|electroplate|wastewater

【摘要】

A potentiometric cobalt-based screen-printing sensor was fabricated by electroplating cobalt on the surface of a screen-printing electrode as the sensitive layer for the determination of dihydrogenphosphate (H2PO4-) in wastewater samples. The electrochemical performance of this sensor was fully examined to determine its detection calibration, detection limit, response time, selectivity, and interference with pH, various ions, and dissolved oxygen (DO). The cobalt-based phosphate sensor showed a phosphate-selective potential response in the range of 10-5 mol·L-1 to 10-1 mol·L-1, yielding a detection limit of 3.16 × 10-6 mol?L-1and a slope of -37.51 mV?decade-1 in an acidic solution (pH 4.0) of H2PO4-. DO and pH were found to interfere with sensor responses to phosphate. Ultimately, the performance of the sensor was validated for detecting wastewater samples from the Xiaojiahe Wastewater Treatment Plant against the standard spectrophotometric methods for H2PO4- analysis. The discrepancy between the two methods was generally ±5% (relative standard deviation). Aside from its high selectivity, sensitivity, and stability, which are comparable with conventional bulk Co-wire sensors, the proposed phosphate sensor presents many other advantages, such as low price, compactness, ease of use, and the possibility of integration with other analytical devices, such as flow injectors.

版权所有 © CALIS管理中心 2008