(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Fouling mechanisms in the early stage of an enhanced coagulation-ultrafiltration process
【刊名】 Frontiers of Environmental Science & Engineering
【刊名缩写】 Front. Environ. Sci. Eng.
【ISSN】 2095-2201
【EISSN】
【DOI】 10.1007/s11783-014-0692-7
【出版社】
【出版年】 2015
【卷期】 9 卷1期
【页码】 73-83 页,共 11 页
【作者】 Haiqing CHANG; Baicang LIU; Wanshen LUO; Guibai LI;
【关键词】 coagulation-UF|trans-membrane pressure (TMP)|permeability|membrane fouling resistance|scanning electron microscopy (SEM)

【摘要】

We investigated the fouling performances of ultrafiltration (UF) membrane for treating in-line coagulated water in an enhanced coagulation-UF hybrid process. Then we analyzed the fouling mechanisms in the early stage of UF using mathematical models and microscopy observation methods. Finally, we discussed the impact of aeration on membrane fouling in this paper. The results showed that a two-stage of trans-membrane pressure (TMP) profile during the operation of enhanced coagulation-UF membrane was observed, and the relationship between permeability and operation time fitted well with a logarithmic curve. Membrane pores blocking and cake filtration were confirmed as main membrane fouling mechanisms using the mathematical models. The two stages of membrane fouling mechanisms were further deduced, namely, the membrane pore narrowing followed by the formation of cake layer. Membrane autopsy analysis using scanning electron microscopy (SEM) images of the membrane surface sampled from different filtration cycles also confirmed the mechanisms of pores blocking and cake filtration. Moreover, according to the variations of the permeability and membrane fouling resistance, aeration was able to mitigate and control the membrane fouling to a certain extent, but the optimization of aeration conditions still needs to be studied.

版权所有 © CALIS管理中心 2008