(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Correlation of interfacial bonding mechanism and equilibrium conductance of molecular junctions
【刊名】 Frontiers of Physics
【刊名缩写】 Front. Phys.
【ISSN】 2095-0462
【EISSN】 2095-0470
【DOI】 10.1007/s11467-014-0453-x
【出版社】
【出版年】 2014
【卷期】 9 卷6期
【页码】 780-788 页,共 9 页
【作者】 Ning Zhan-Yu(宁展宇); Qiao Jing-Si(乔婧思); Ji Wei(季威); Guo Hong(郭鸿);
【关键词】 molecular electronics|contact formation|bonding mechanism|quantum transport

【摘要】

We report theoretical investigations on the role of interfacial bonding mechanism and its resulting structures to quantum transport in molecular wires. Two bonding mechanisms for the Au-S bond in an Au(111)/1,4-benzenedithiol(BDT)/Au(111) junction were identified by ab initio calculation, confirmed by a recent experiment, which, we showed, critically control charge conduction. It was found, for Au/BDT/Aujunctions, the hydrogen atom, bound by a dative bond to the Sulfur, is energetically non-dissociativeafter the interface formation. The calculated conductance and junction breakdown forces of H-non-dissociative Au/BDT/Au devices are consistent with the experimental values, while the H-dissociated devices, with the interface governed by typical covalent bonding, give conductance more than an order of magnitude larger. By examining the scattering states that traverse the junctions, we have revealed that mechanical and electric properties of a junction have strong correlation with the bonding configuration. This work clearly demonstrates that the interfacial details, rather than previously believed many-body effects, is of vital importance for correctly predicting equilibrium conductance of molecular junctions; and manifests that the interfacial contact must be carefully understood for investigating quantum transport properties of molecular nanoelectronics.

版权所有 © CALIS管理中心 2008