(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Influence of pore pressure on tensile fracture growth in rocks: a new explanation based on numerical testing
【刊名】 Frontiers of Earth Science
【刊名缩写】 Front. Earth Sci.
【ISSN】 2095-0195
【EISSN】
【DOI】 10.1007/s11707-014-0481-4
【出版社】
【出版年】 2015
【卷期】 9 卷3期
【页码】 412-426 页,共 15 页
【作者】 Shou MA; Jianchun GUO; Lianchong LI; Leslie George THAM; Yingjie XIA; Chun’an TANG;
【关键词】 pore pressure|effective stress|heterogeneous|numerical simulation|fracture growth|rock

【摘要】

The diffusion of pore fluid pressures may create both spatial and temporal effective stress gradients that influence or control the development and evolution of fractures within rock masses. To better understand the controls on fracturing behavior, numerical simulations are performed using a progressive fracture modeling approach that shares many of the same natural kinematic features in rocks, such as fracture growth, nucleation, and termination. First, the pinch-off breaking test is numerically performed to investigate the tensile failure of a rock specimen in a uniform pore pressure field. In this numerical simulation, both mechanical and hydrological properties of a suite of rocks are measured under simulated laboratory conditions. The complete tensional failure process of the rock specimen under pore pressure was reproduced. Second, a double-notched specimen is numerically extended to investigate how the water flow direction or pore pressure gradient influences the fracture growth. An exhaustive sensitivity study is conducted that examines the effects of varying both hydrological and mechanical boundary conditions. The simulation results indicate that local fluid pressure gradients strongly influence the state of stress in the solids and, thereby, fracture growth. Fracture and strength behavior is influenced not only by the pore pressure magnitude on a local scale around the fracture tip, but also by the orientation and distribution of pore pressure gradients on a global scale. Increasing the fracture growth rate increases the local model permeability and decreases the sample strength. The results of this study may provide useful information concerning the degree of hydrological and mechanical coupling action under geologic conditions.

版权所有 © CALIS管理中心 2008