(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Spectral data treatments for impervious endmember derivation and fraction mapping from Landsat ETM+ imagery: a comparative analysis
【刊名】 Frontiers of Earth Science
【刊名缩写】 Front. Earth Sci.
【ISSN】 2095-0195
【EISSN】
【DOI】 10.1007/s11707-014-0456-5
【出版社】
【出版年】 2015
【卷期】 9 卷2期
【页码】 179-191 页,共 13 页
【作者】 Wei WANG; Xinfeng YAO; Minhe JI; Jiao ZHANG;
【关键词】 impervious surface estimation|linear spectral mixture analysis|minimum noise fraction|spectral normalization|image fusion

【摘要】

Various spectral data preprocessing approaches have been used to improve endmember extraction for urban landscape decomposition, yet little is known of their comparative adequacy for impervious surface mapping. This study tested four commonly used spectral data treatment strategies for endmember derivation, including original spectra, image fusion via principal component analysis, spectral normalization, and the minimum noise fraction (MNF) transformation. Land cover endmembers derived using each strategy were used to build a linear spectral mixture analysis (LSMA) model in order to unmix treated image pixels into fraction maps, and an urban imperviousness map was generated by combining the fraction maps representing imperviousness endmembers. A cross-map comparative analysis was then performed to rank the four data treatment types based on such common evaluation indices as the coefficient of determination (R2) and root mean square error (RMSE). A Landsat 7 ETM+ multispectral image covering the metropolitan region of Shanghai, China was used as the primary dataset, and the model results were evaluated using high-resolution color-infrared aerial photographs of roughly the same time period. The test results indicated that, with the highest R2 (0.812) and the lowest RMSE (0.097) among all four preprocessing treatments, the endmembers in the form of MNF-transformed spectra produced the best model output for characterizing urban impervious surfaces. The outcome of this study may provide useful guidance for future impervious surface mapping using medium-resolution remote sensing data.

版权所有 © CALIS管理中心 2008