(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Effects of rape straw and red mud on extractability and bioavailability of cadmium in a calcareous soil
【刊名】 Frontiers of Environmental Science & Engineering
【刊名缩写】 Front. Environ. Sci. Eng.
【ISSN】 2095-2201
【EISSN】
【DOI】 10.1007/s11783-014-0674-9
【出版社】
【出版年】 2015
【卷期】 9 卷3期
【页码】 419-428 页,共 10 页
【作者】 Junxing YANG; Liqun WANG; Jumei LI; Dongpu WEI; Shibao CHEN; Qingjun GUO; Yibing MA;
【关键词】 red mud|rape straw|cadmium|immobilization|calcareous soil

【摘要】

Screening of cost-effective soil amendments is important to develop “in situ” remediation techniques for cadmium (Cd) contaminated soils. In this study, different soil amendments, including red mud, a by-product of the alumina industry, and acid-treated, nano-treated by nano-particle milling, nano and acid-treated red muds, zeolite, corn straw, and rape straw, were evaluated to immobilize Cd in two added levels (2 and 5 mg Cd·kg-1 soil) in a calcareous soil by single and sequential extractions and by cucumber (Cucumis sativus L.) pot experiments. Results indicated that cruciferous rape straw significantly decreased the concentrations of water soluble, extractable Cd in soils, and Cd in cucumber plants, and it was more effective than gramineous corn straw. Also, red mud generally decreased the extractability and bioavailability of Cd added to calcareous soils more effectively than zeolite. Furthermore, the efficiency of red mud could be increased by the treatment of nano-particle milling due to the increase in specific surface area of red mud. It is potential to use rape straw and red mud as soil amendments to develop a cost-effective and efficient “in situ” remediation technology for Cd mildly contaminated calcareous soils.

版权所有 © CALIS管理中心 2008