(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Effect of Fe loading quantity on reduction reactivity of nano zero-valent iron supported on chelating resin
【刊名】 Frontiers of Environmental Science & Engineering
【刊名缩写】 Front. Environ. Sci. Eng.
【ISSN】 2095-2201
【EISSN】
【DOI】 10.1007/s11783-015-0781-2
【出版社】
【出版年】 2015
【卷期】 9 卷5期
【页码】 840-849 页,共 10 页
【作者】 Jialu SHI; Shengnan YI; Chao LONG; Aimin LI;
【关键词】 nanoscale zero valent iron|loading quantity|reduction|chelating resin|bromated

【摘要】

In this study, nanoscale zero-valent iron (NZVI) were immobilized within a chelating resin (DOW 3N). To investigate the effect of Fe loading on NZVI reactivity, three NZVI-resin composites with different Fe loading were obtained by preparing Fe(III) solution in 0, 30 and 70% (v/v) ethanol aqueous, respectively; the bromate was used as a model contaminant. TEM reveals that increasing the Fe loading resulted in much larger size and poor dispersion of nanoscale iron particles. The results indicated that the removal efficiency of bromate and the rate constant (Kobs) were decreased with increasing the Fe loading. For the NZVI-resin composite with lower Fe loading, the removal efficiency of bromate declined more significantly with the increase of DO concentrations. Under acidic conditions, decreasing the pH value had the most significant influence on NZVI-R3 with highest Fe loading for bromate removal; however, under alkaline conditions, the most significant influence of pH was on NZVI-R1 with lowest Fe loading. The effects of co-existing anions NO3, PO43 and HCO3 were also investigated. All of the co-existing anions showed the inhibition to bromate reduction.

版权所有 © CALIS管理中心 2008