(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Development of highly active coated monolith SCR catalyst with strong abrasion resistance for low-temperature application
【刊名】 Frontiers of Environmental Science & Engineering
【刊名缩写】 Front. Environ. Sci. Eng.
【ISSN】 2095-2201
【EISSN】
【DOI】 10.1007/s11783-015-0824-8
【出版社】
【出版年】 2015
【卷期】 9 卷6期
【页码】 979-987 页,共 9 页
【作者】 Lina GAN; Shan LEI; Jian YU; Hongtao MA; Yo YAMAMOTO; Yoshizo SUZUKI; Guangwen XU; Zhanguo ZHANG;
【关键词】 coated monolith|low-temperature denitration|abrasion resistance|attrition

【摘要】

Monolith SCR catalysts coated with V2O5-WO3/TiO2 were prepared by varying binder and coating thickness. Comparing with a monolith extruded with 100% V2O5-WO3/TiO2 powder, a coated monolith with a catalyst-coating layer of 260 μm in thickness exhibited the similar initial NOx reduction activity at 250°C. After 4 h abrasion (attrition) in an air stream containing 300 g·m−3 fine sands (50–100 μm) at a superficial gas velocity of 10 m·s−1, the catalyst still has the activity as a 100% molded monolith does in a 24-h activity test and it retains about 92% of its initial activity at 250°C. Estimation of the equivalent durable hours at a fly ash concentration of 1.0 g·m−3 in flue gas and a gas velocity of 5 m·s−1 demonstrated that this coated monolith catalyst is capable of resisting abrasion for 13 months without losing more than 8% of its initial activity. The result suggests the great potential of the coated monolith for application to de-NOx of flue gases with low fly ash concentrations from, such as glass and ceramics manufacturing processes.

版权所有 © CALIS管理中心 2008