(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Inference and learning in hybrid probabilistic network
【刊名】 Frontiers of Computer Science in China
【刊名缩写】 Front. Comput. Sci. China
【ISSN】 1673-7350
【EISSN】 1673-7466
【DOI】 10.1007/s11704-007-0041-0
【出版社】 Higher Education Press and Springer-Verlag
【出版年】 2007
【卷期】 1 卷4期
【页码】 429-435 页,共 7 页
【作者】 WANG Limin; WANG Xuecheng; LI Xiongfei;
【关键词】 hybrid probabilistic network; conditional independence assumption; Bayesian network; probabilistic neural network

【摘要】
This paper proposed a novel hybrid probabilistic network, which is a good tradeoff between the model complexity and learnability in practice. It relaxes the conditional independence assumptions of Naive Bayes while still permitting efficient inference and learning. Experimental studies on a set of natural domains prove its clear advantages with respect to the generalization ability.
版权所有 © CALIS管理中心 2008