(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Slope spectrum variation in a simulated loess watershed
【刊名】 Frontiers of Earth Science
【刊名缩写】 Front. Earth Sci.
【ISSN】 2095-0195
【EISSN】 2095-0209
【DOI】 10.1007/s11707-015-0519-2
【出版社】
【出版年】 2016
【卷期】 10 卷2期
【页码】 328-339 页,共 12 页
【作者】 Fayuan LI; Guoan TANG; Chun WANG; Lingzhou CUI; Rui ZHU;
【关键词】 slope spectrum|evolution|simulated watershed|loess landform

【摘要】

A simulated loess watershed, where the loess material and relief properly represent the true loess surface, is adopted to investigate the variation in slope spectrum with loess watershed evolution. The evolution of the simulated loess watershed was driven by the exogenetic force of artificial rainfall. For a period of three months, twenty artificial rainfall events with different intensities and durations were carried out. In the process, nine DEM data sets, each with 10 mm grid resolution, were established by the method of close-range photogrammetry. The slope spectra were then extracted from these DEMs. Subsequent series of carefully designed quantitative analyses indicated a strong relationship between the slope spectrum and the evolution of the simulated loess watershed.

Quantitative indices of the slope spectrum varied regularly following the evolution of the simulated loess watershed. Mean slope, slope spectrum information entropy (H), terrain driving force (Td), Mean patch area (AREA_MN), Contagion Index (CONTAG), and Patch Cohesion Index (COHESION) kept increasing following the evolution of the simulated watershed, while skewness (S), Perimeter-Area Fractal Dimension (PAFRAC), and Interspersion and Juxtaposition Index (IJI) represented an opposite trend. All the indices changed actively in the early and active development periods, but slowly in the stable development periods. These experimental results indicate that the time series of slope spectra was able to effectively depict the slope distribution of the simulated loess watershed, thus presenting a potential method for modeling loess landforms.

版权所有 © CALIS管理中心 2008