(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Estimation of distribution algorithm enhanced particle swarm optimization for water distribution network optimization
【刊名】 Frontiers of Environmental Science & Engineering
【刊名缩写】 Front. Environ. Sci. Eng.
【ISSN】 2095-2201
【EISSN】 2095-221X
【DOI】 10.1007/s11783-015-0776-z
【出版社】
【出版年】 2016
【卷期】 10 卷2期
【页码】 341-351 页,共 11 页
【作者】 Ke LI; Walter D. POTTER; Xuewei QI;
【关键词】 particle swarm optimization (PSO)|diversity control|estimation of distribution algorithm (EDA)|water distribution network (WDN)|premature convergence|hybrid strategy

【摘要】

The optimization of a water distribution network (WDN) is a highly nonlinear, multi-modal, and constrained combinatorial problem. Particle swarm optimization (PSO) has been shown to be a fast converging algorithm for WDN optimization. An improved estimation of distribution algorithm (EDA) using historic best positions to construct a sample space is hybridized with PSO both in sequential and in parallel to improve population diversity control and avoid premature convergence. Two water distribution network benchmark examples from the literature are adopted to evaluate the performance of the proposed hybrid algorithms. The experimental results indicate that the proposed algorithms achieved the literature record minimum (6.081 M$) for the small size Hanoi network. For the large size Balerma network, the parallel hybrid achieved a slightly lower minimum (1.921M?) than the current literature reported best minimum (1.923M?). The average number of evaluations needed to achieve the minimum is one order smaller than most existing algorithms. With a fixed, small number of evaluations, the sequential hybrid outperforms the parallel hybrid showing its capability for fast convergence. The fitness and diversity of the populations were tracked for the proposed algorithms. The track record suggests that constructing an EDA sample space with historic best positions can improve diversity control significantly. Parallel hybridization also helps to improve diversity control yet its effect is relatively less significant.

版权所有 © CALIS管理中心 2008