(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Degradation of carbon tetrachloride in thermally activated persulfate system in the presence of formic acid
【刊名】 Frontiers of Environmental Science & Engineering
【刊名缩写】 Front. Environ. Sci. Eng.
【ISSN】 2095-2201
【EISSN】 2095-221X
【DOI】 10.1007/s11783-015-0798-6
【出版社】
【出版年】 2016
【卷期】 10 卷3期
【页码】 438-446 页,共 9 页
【作者】 Minhui XU; Xiaogang GU; Shuguang LU; Zhouwei MIAO; Xueke ZANG; Xiaoliang WU; Zhaofu QIU; Qian SUI;
【关键词】 persulfate|carbon tetrachloride|thermal activation|formic acid|carbon dioxide radical anion

【摘要】

The thermally activated persulfate (PS) degradation of carbon tetrachloride (CT) in the presence of formic acid (FA) was investigated. The results indicated that CT degradation followed a zero order kinetic model, and CO2-· was responsible for the degradation of CT confirmed by radical scavenger tests. CT degradation rate increased with increasing PS or FA dosage, and the initial CT had no effect on CT degradation rate. However, the initial solution pH had effect on the degradation of CT, and the best CT degradation occurred at initial pH 6. Cl- had a negative effect on CT degradation, and high concentration of Cl- displayed much strong inhibition. Ten mmol·L-1HCO3- promoted CT degradation, while 100 mmol·L-1NO3- inhibited the degradation of CT, but SO42- promoted CT degradation in the presence of FA. The measured Cl- concentration released into solution along with CT degradation was 75.8% of the total theoretical dechlorination yield, but no chlorinated intermediates were detected. The split of C-Cl was proposed as the possible reaction pathways in CT degradation. In conclusion, this study strongly demonstrated that the thermally activated PS system in the presence of FA is a promising technique in in situ chemical oxidation (ISCO) remediation for CT contaminated site.

版权所有 © CALIS管理中心 2008