(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Catalytic activities and mechanism of formaldehyde oxidation over gold supported on MnO2 microsphere catalysts at room temperature
【刊名】 Frontiers of Environmental Science & Engineering
【刊名缩写】 Front. Environ. Sci. Eng.
【ISSN】 2095-2201
【EISSN】 2095-221X
【DOI】 10.1007/s11783-015-0808-8
【出版社】
【出版年】 2016
【卷期】 10 卷3期
【页码】 447-457 页,共 11 页
【作者】 Guanglong PANG; Donghui WANG; Yunhong ZHANG; Chunyan MA; Zhengping HAO;
【关键词】 MnO2 microspheres|Au/MnO2|formaldehyde oxidation|γ-MnO2

【摘要】

MnO2 microspheres with various surface structures were prepared using the hydrothermal method, and Au/MnO2 catalysts were synthesized using the sol-gel method. We obtained three MnO2 microspheres and Au/MnO2 samples: coherent solid spheres covered with wire-like nanostructures, solid spheres with nanosheets, and hierarchical hollow microspheres with nanoplatelets and nanorods. We investigated the properties and catalytic activities of formaldehyde oxidation at room temperature. Crystalline structures of MnO2 are the main factor affecting the catalytic activities of these samples, and γ-MnO2 shows high catalytic performance. The excellent redox properties are responsible for the catalytic ability of γ-MnO2. The gold-supported interaction can change the redox properties of catalysts and accelerate surface oxygen species transition, which can account for the catalytic activity enhancement of Au/MnO2. We also studied intermediate species. The dioxymethylene (DOM) and formate species formed on the catalyst surface were considered intermediates, and were ultimately transformed into hydrocarbonate and carbonate and then decomposed into CO2. A proposed mechanism of formaldehyde oxidation over Au/MnO2 catalysts was also obtained.

版权所有 © CALIS管理中心 2008