(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Enhanced performances in catalytic oxidation of o-xylene over hierarchical macro-/mesoporous silica-supported palladium catalysts
【刊名】 Frontiers of Environmental Science & Engineering
【刊名缩写】 Front. Environ. Sci. Eng.
【ISSN】 2095-2201
【EISSN】 2095-221X
【DOI】 10.1007/s11783-015-0802-1
【出版社】
【出版年】 2016
【卷期】 10 卷3期
【页码】 458-466 页,共 9 页
【作者】 Nanli QIAO; Xin ZHANG; Chi HE; Yang LI; Zhongshen ZHANG; Jie CHENG; Zhengping HAO;
【关键词】 hierarchical macro-/mesoporous|silica|palladium|VOCs catalytic oxidation

【摘要】

A series of hierarchical macro-/mesoporous silica supports (MMSs) were successfully synthesized using dual-templating technique employing polystyrene (PS) spheres and the Pluronic P123 surfactant. Pd was next loaded on the hierarchical silica supports via colloids precipitation method. Physicochemical properties of the synthesized samples were characterized by various techniques and all catalysts were tested for the total oxidation of o-xylene. Among them, the Pd/MMS-b catalyst with tetraethoxysilane/polystyrene weight ratio of 1.0 exhibited superior catalytic activity, and under a higher gas hourly space velocity (GHSV) of 70000 h-1, the 90% conversion of o-xylene has been obtained at around 200°C. The BET and SEM results indicated that Pd/MMS-b catalyst possesses high surface area and large pore volume, and well-ordered, interconnected macropores and 2D hexagonally mesopores hybrid network. This novel ordered hierarchical porous structure was highly beneficial to the dispersion of active sites Pd nanoparticles with less aggregation, and facilitates diffusion of reactants and products. Furthermore, the Pd/MMS-b catalyst possessed good stability and durability.

版权所有 © CALIS管理中心 2008