(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Fate and removal of typical pharmaceutical and personal care products in a wastewater treatment plant from Beijing: a mass balance study
【刊名】 Frontiers of Environmental Science & Engineering
【刊名缩写】 Front. Environ. Sci. Eng.
【ISSN】 2095-2201
【EISSN】 2095-221X
【DOI】 10.1007/s11783-016-0837-y
【出版社】
【出版年】 2016
【卷期】 10 卷3期
【页码】 491-501 页,共 11 页
【作者】 Jie GAO; Jun HUANG; Weiwei CHEN; Bin WANG; Yujue WANG; Shubo DENG; Gang YU;
【关键词】 PPCPs|A2/O|mass balance|removal efficiency|sludge

【摘要】

The fate and removal of pharmaceuticals and personal care products (PPCPs) in wastewater treatment plants (WWTPs) has received great attention during the last decade. Numerous data concerning concentrations in the water phase can be found in the literature, however corresponding data from sludge as well as associated mass balance calculations are very limited. In the present study, the adsorbed and dissolved concentrations of 9 PPCPs were investigated in each unit of a WWTP in Beijing, China. Based on the calculation of mass balance, the relative mass distribution and removal efficiency of each target compound was obtained at each process. The amount of PPCPs entering into the WWTP ranged from 12 g·d-1 to 3848 g·d-1. Five target compounds (caffeine, chloramphenicol, bezafibrate, clofibric acid, and N,N-diethyl-meta-toluamide) were effectively removed, with rates of 57%–100%. Negative removal efficiencies were obtained for sulpiride, metoprolol, nalidixic acid, and carbamazepine, ranging from -19% to -79%. PPCPs mainly existed in dissolved form (≥92%) in both the raw influent and the final effluent. The sludge cake carried a much lower amount of PPCPs (17 g·d-1) compared with the discharged effluent (402 g·d-1). In A2/O treatment tanks, the anaerobic and anoxic tanks showed good performance for PPCPs removal, and the amount of adsorbed PPCPs was increased. The results reveal that both the dissolved and the adsorbed phases should be considered when assessing the removal capacity of each A2/O tank.

版权所有 © CALIS管理中心 2008