(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Deformation geometry and timing of the Wupoer thrust belt in the NE Pamir and its tectonic implications
【刊名】 Frontiers of Earth Science
【刊名缩写】 Front. Earth Sci.
【ISSN】 2095-0195
【EISSN】 2095-0209
【DOI】 10.1007/s11707-016-0606-z
【出版社】
【出版年】 2016
【卷期】 10 卷4期
【页码】 751-760 页,共 10 页
【作者】 Xiaogan CHENG; Hanlin CHEN; Xiubin LIN; Shufeng YANG; Shenqiang CHEN; Fenfen ZHANG; Kang LI; Zelin LIU;
【关键词】 Pamir|Kongur|Wupoer|gravitational collapse|fold-and-thrust belt

【摘要】

The Pamir region, located to the northwest of the Tibetan Plateau, provides important information that can aid the understanding of the plateau’s tectonic evolution. Here we present new findings on the deformation geometry and timing of the Wupoer thrust belt at the northeastern margin of Pamir. Field investigations and interpretations of seismic profiles indicate that the eastern portion of the Wupoer thrust belt is dominated by an underlying foreland basin and an overlying piggy-back basin. A regional unconformity occurs between the Pliocene (N2) and the underlying Miocene (N1) or Paleogene (Pg) strata associated with two other local unconformities between Lower Pleistocene (Q1) and N2 and between Middle Pleistocene (Q2-4) and Q1 strata. Results of structural restorations suggest that compressional deformation was initiated during the latest Miocene to earliest Pliocene, contributing a total shortening magnitude of 48.6 km with a total shortening rate of 48.12%, most of which occurred in the period from the latest Miocene to earliest Pliocene. These results, combined with previous studies on the Kongur and Tarshkorgan extensional system, suggest an interesting picture of strong piedmont compressional thrusting activity concurrent with interorogen extensional rifting. Combining these results with previously published work on the lithospheric architecture of the Pamir, we propose that gravitational collapse drove the formation of simultaneous extensional and compressional structures with a weak, ductile middle crustal layer acting as a décollement along which both the extensional and compressional faults merged.

版权所有 © CALIS管理中心 2008