(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 miRACA: A database for miRNAs associated with cancers and age related disorders (ARD)
【刊名】 Frontiers in Biology
【刊名缩写】 Front. Biol.
【ISSN】 1674-7984
【EISSN】 1674-7992
【DOI】 10.1007/s11515-018-1481-7
【出版社】
【出版年】 2018
【卷期】 13 卷1期
【页码】 36-50 页,共 15 页
【作者】 Razia Rahman; Lokesh Kumar Gahlot; Yasha Hasija;
【关键词】 miRNA|cancer|age related disorders (ARD)|target genes|database

【摘要】

BACKGROUND: With the given diversity and abundance of several targets of miRNAs, they functionally appear to interact with several elements of the multiple cellular networks to maintain physiologic homeostasis. They can function as tumor suppressors or oncogenes, whose under or overexpression has both diagnostic and prognostic significance in various cancers while being implicated as prospective regulators of age-related disorders (ARD) as well. Establishing a concatenate between ARD and cancers by looking into the insights of the shared miRNAs may have a practical relevance.

METHODS: In the present work, we performed network analysis of miRNA-disease association and miRNA-target gene interaction to prioritize miRNAs that play significant roles in the manifestation of cancer as well as ARD. Also, we developed a repository that stores miRNAs common to both ARD and cancers along with their target genes.

RESULTS: We have comprehensively curated all miRNAs that we found to be shared in both the diseases in the human genome and established a database, miRACA (Database for microRNAs Associated with Cancers and ARD) that currently houses information of 1648 miRNAs that are significantly associated with 38 variants supported with pertinent data. It has been made available online at http://genomeinformatics.dtu.ac.in/miraca/ for easy retrieval and utilization of data by the scientific community.

CONCLUSION: To the best of our knowledge, our database is the first attempt at compilation of such data. We believe this work may serve as a significant resource and facilitate the analysis of miRNA regulatory mechanisms shared between cancers and ARD to apprehend disease etiology.

版权所有 © CALIS管理中心 2008