(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Identification of field isolates of Rhizoctonia solani to detect quantitative resistance in rice under greenhouse conditions
【刊名】 Frontiers of Agriculture in China
【刊名缩写】 Front. Agric. China
【ISSN】 1673-7334
【EISSN】 1673-744X
【DOI】 10.1007/s11703-007-0061-4
【出版社】 Higher Education Press and Springer-Verlag
【出版年】 2007
【卷期】 1 卷4期
【页码】 361-367 页,共 7 页
【作者】 Yeshi A. Wamishe; JIA Yulin; Pratibha Singh; Richard D. Cartwright;
【关键词】 thanatephorus cucumeris; micro-chamber; hyphal growth rate; aggressiveness

【摘要】
The rates of in vitro hyphal growth of Rhizoctonia solani isolates, and their pathogenicity were evaluated to identify R. solani isolates that are suitable to detect quantitative resistance in rice. The isolates of R. solani were purified from the infected rice and two grass species in Arkansas over three years. Among 200 Rhizoctonia-like isolates, 102 isolates were identified as R. solani, and confirmed using a ribosomal DNA internal transcribed spacers’ marker. The rates of in vitro hyphal growth of the 102 R. solani isolates ranged from 1.17 to 1.89 mm/h, of which only 13.7% were significantly different from each other. The rates of in vitro hyphal growth of eight selected isolates were correlated with lesion lengths (r = 0.86 at P = 0.005 9 and r = 0.93 at P = 0.000 1) on the detached leaves of rice cultivars of Jasmine 85 (resistant) and M202 (susceptible), respectively. The eight isolates were selected based on the mean values of the maximal (1.89), median (1.54) and minimal (1.17) rates of hyphal growth. Two isolates that consistently exhibited significant differences in the rates of the hyphal growth were selected to examine the aggressiveness of isolates in micro-chambers. Using a micro-chamber, the slow growing isolates separated susceptible cultivars from moderately resistant cultivars better than the fast growing isolates. In contrast, the differences in disease reactions between both R. solani isolates were undetected using a standard field evaluation method. We suggest that the slow growing isolates are more useful than the fast growing isolates for detecting quantitative resistance with the micro-chamber method.
版权所有 © CALIS管理中心 2008