(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Land rehabilitation improves edaphic conditions and increases soil microbial biomass and abundance
【刊名】 Soil Ecology Letters
【刊名缩写】 Soil Ecology Letters
【ISSN】 2662-2289
【EISSN】 2662-2297
【DOI】 10.1007/s42832-020-0030-x
【出版社】
【出版年】 2020
【卷期】 2 卷2期
【页码】 145-156 页,共 12 页
【作者】 Dong Liu; Baorong Wang; Parag Bhople; Fayzmamad Davlatbekov; Fuqiang Yu;
【关键词】 Land-use change|Soil microbial carbon|Chloroform fumigation extraction|PLFA|Physiological indices

【摘要】

Rehabilitation of farmland improves the local eco-environmental conditions. But to what extent this transformation influences soil microbial properties is less known. In our study we compared variations in soil microbial attributes following changes in land-use types to understand the influence of altered soil properties on microbial biomass and their community structure using chloroform fumigation extraction method and phospholipid fatty acid (PLFA) analysis. For this purpose, 3 agricultural (AL) (farmland, apple orchard and 2 years abandoned land) and 4 rehabilitated lands (RL) of various vegetations grassland, shrubland, mixed forest (Amorpha fruticosa and Pinus tabuliformis Carr.) and forest (Robinia pseudoacacia) were selected. Our results showed higher soil organic carbon (SOC) contents in RL soils (forest>mixed forest>grassland>shrub land) than that in AL soils. In RL soils, soil microbial biomass and abundance of group specific PLFA were significantly higher than those in AL soils. Under different land-use types, microbial community was bacteria dominated over fungi. The microbial physiological indices (G+/G, cyc/prec and S/M) indicated decreased environmental stress in RL soils in comparison with AL soils. In loess soils, SOC and total N correlated positively (p<0.05) with microbial biomass C, N and P and also with fungal and bacterial PLFA, indicating a positive microbial mediation in improving soil fertility. Taking together, our findings suggest that land rehabilitation, especially Robinia pseudoacacia planation, improves overall edaphic conditions and accelerates soil microbial biomass accumulation in local regions.

版权所有 © CALIS管理中心 2008