(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Another model for a multiexcitonic quantum dot in an optical microcavity
【刊名】 Frontiers of Physics in China
【刊名缩写】 Front. Phys. China
【ISSN】 1673-3487
【EISSN】 1673-3606
【DOI】 10.1007/s11467-007-0014-7
【出版社】 Higher Education Press and Springer-Verlag
【出版年】 2007
【卷期】 2 卷1期
【页码】 63-67 页,共 5 页
【作者】 SHAN Guang-cun; BAO Shu-ying; HUANG Wei;
【关键词】 quantum dots; microcavity; optical properties; lindblad; exciton

【摘要】
Very recently, a multiexcitonic quantum dot in an optical microcavity have been theoretically studied [Herbert Vincka, Boris A. Rodriguez, and Augusto Gonzalez, Physica E, 2006, 35: 99?102]. However, due to the inevitable damping losses through the microcavity, in this work, we will present a more precise and sound model in the Lindblad form master equation to investigate the photonic properties of a single quantum dot (QD) in an optical microcavity system, in which the QD may confine the multiexcitons and be in resonant interaction with a single photonic mode of an optical microcavity. The excitation energies, and the properties of the emission photon from the QD microcavity are computed as functions of the exciton-photon coupling strength, detuning, and pump rate. We further compare our results with their results, and find that the calculated intensity of the emitted photon and the spectra crucially depend on the exciton-photon coupling strength g, the photon detuning, and the number of excitons in the QD. Finally, we will give a physical mechanism of the dressed-state picture for the strong coupling between the single mode of an optical microcavity and the QD emitters to explain the details of the emission photon spectra. Our study establishes useful guidelines for the experimental study of such multiexcitonic quantum dot in an optical microcavity system.
版权所有 © CALIS管理中心 2008