(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Contrasting effects of N fertilization and mowing on ecosystem multifunctionality in a meadow steppe
【刊名】 Soil Ecology Letters
【刊名缩写】 Soil Ecology Letters
【ISSN】 2662-2289
【EISSN】 2662-2297
【DOI】 10.1007/s42832-020-0046-2
【出版社】
【出版年】 2020
【卷期】 2 卷4期
【页码】 268-280 页,共 13 页
【作者】 Haiying Cui; Wei Sun; Manuel Delgado-Baquerizo; Wenzheng Song; Jian-Ying Ma; Keying Wang; Xiaoli Ling;
【关键词】 Ecosystem multifunctionality|Sustainable grassland management|Land use intensification|Mowing|Multi-threshold approach|Nitrogen fertilization

【摘要】

There is little experimental field evidence on how multiple essential land use intensification drivers (LUIDs), such as nitrogen (N) fertilization and mowing, interact to control ecosystem multifunctionality. Here, we conducted a 4-year field experiment in a meadow steppe in northeast China and evaluated the direct and indirect effects of mowing and N fertilization on a range of ecosystem functions associated with nutrient cycle, carbon stocks, and organic matter decomposition during the past 2 years of the experiment (2017 and 2018). Mowing had negative effects on the ecosystem multifunctionality index (EMF), carbon (C) cycle multifunctionality index (CCMF), and N cycle multifunctionality index (NCMF) in 2 years of sampling. However, in general, the responses of multifunctionality to N fertilization were rate-specific and year-dependent. N fertilization had positive effects on EMF, CCMF, NCMF, and phosphorus (P) cycle multifunctionality index (PCMF) in 2017, with the higher precipitation rate during the growing season, which was likely associated with the strong monsoon season. However, in 2018, EMF, CCMF, and NCMF increased at the lower N fertilization levels (≤10 g N m2 yr1), but decreased at higher N rates. N fertilization had consistent positive effects on PCMF in the 2 years of sampling. The effects of land use drivers on multifunctionality were indirectly influenced by bacterial biomass, plant richness, and soil moisture changes. Our results also indicated that the impacts of land use drivers on multifunctionality played an important role in maintaining a range of functions at low levels of functioning (<50% functional threshold). Low N fertilization levels (≤10 g N m2 yr1) were able to reduce the negative effects of mowing on ecosystem multifunctionality while promoting plant biomass (food for livestock) and C storage. These findings are useful for designing practical strategies toward promoting multifunctionality by managing multiple LUIDs in a meadow steppe.

版权所有 © CALIS管理中心 2008