(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Recurrent neural networks-based multivariable system PID predictive control
【刊名】 Frontiers of Electrical and Electronic Engineering in China
【刊名缩写】 Front. Electr. Electron. Eng. China
【ISSN】 1673-3460
【EISSN】 1673-3584
【DOI】 10.1007/s11460-007-0037-4
【出版社】 Higher Education Press and Springer-Verlag
【出版年】 2007
【卷期】 2 卷2期
【页码】 197-201 页,共 5 页
【作者】 ZHANG Yan; WANG Fanzhen; SONG Ying; CHEN Zengqiang; YUAN Zhuzhi;
【关键词】 predictive control; decoupling control; recurrent neural networks; nonlinear PID control

【摘要】
A nonlinear proportion integration differentiation (PID) controller is proposed on the basis of recurrent neural networks, due to the difficulty of tuning the parameters of conventional PID controller. In the control process of nonlinear multivariable system, a decoupling controller was constructed, which took advantage of multi-nonlinear PID controllers in parallel. With the idea of predictive control, two multivariable predictive control strategies were established. One strategy involved the use of the general minimum variance control function on the basis of recursive multi-step predictive method. The other involved the adoption of multi-step predictive cost energy to train the weights of the decoupling controller. Simulation studies have shown the efficiency of these strategies.
版权所有 © CALIS管理中心 2008