(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Magnetic properties of urban soil profile and their significance for traffic pollution–Case study of the capital airport expressway in Beijing
【刊名】 Frontiers of Earth Science in China
【刊名缩写】 Front. Earth Sci. China
【ISSN】 1673-7385
【EISSN】 1673-7490
【DOI】 10.1007/s11707-008-0052-7
【出版社】 Higher Education Press and Springer-Verlag
【出版年】 2008
【卷期】 2 卷4期
【页码】 400-407 页,共 8 页
【作者】 SHEN Mingjie; HU Shouyun; BLAHA Uli.; YAN Haitao; R?SLER Wolfgang.; APPEL Ewin.; HOFFMANN Viktor.;
【关键词】 mineral magnetism; traffic pollution; heavy metal; multivariate statistics

【摘要】
An expressway-side soil profile 22 cm long was sampled from the grassland of the expressway linking Beijing and the Capital International Airport. Magnetic measurements, geochemical and multivariate statistic analyses were performed on the soil samples. The results reveal that the soil profile can be divided into two parts with significant difference in magnetic proxies and heavy metal concentration. The uppermost soil horizon (0–8 cm) represents the pollution-rich layer with higher concentration of ferrimagnetic phases and metallic elements. The values of χ are very high with an average of 141.60 × 10-8 m3·kg-1 in the layer. We explain that the anthropogenic dust input from traffic is the predominant cause for strong signals of magnetic phases and heavy metals. Below the profile depth of 8 cm, there is minor pollution in the soil with lower concentration of magnetic minerals and heavy metals compared to the natural background values. χ remains quite stable and relatively low with an average of 49.44 × 10-8 m3·kg-1. S-ratio also generally decreases with depth, and it changes from 0.93 in the 0–8 cm layer to 0.87 below the depth of 8 cm. It indicates that the soil samples are overwhelmingly predominated by ferrimagnetic minerals in the upper part soil, while the contribution of imperfect antiferromagnetic components is stronger in the lower part. Rock magnetic experiments show MD magnetite as the main magnetic carrier both in the upper and lower parts. The magnetic grain size in the upper part is, however, a bit coarser than that in the lower part. Cluster analysis shows a positive correlation between magnetic properties (χ, ARM, SIRM) and heavy metal pollutants of Pb, Zn, Cu. Fuzzy C-means cluster analysis can clearly help divide the soil profile into two different layers and distinguish their characteristics. It can be concluded that these magnetic concentration-related parameters can be used as proxies for pollution investigation in a fast, sensitive, low-cost and highly efficient approach to screening heavy metal pollution.
版权所有 © CALIS管理中心 2008