(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Neural network methods for forecasting turning points in economic time series: an asymmetric verification to business cycles
【刊名】 Frontiers of Computer Science in China
【刊名缩写】 Front. Comput. Sci. China
【ISSN】 1673-7350
【EISSN】 1673-7466
【DOI】 10.1007/s11704-010-0506-4
【出版社】 Higher Education Press and Springer-Verlag Berlin Heidelberg
【出版年】 2010
【卷期】 4 卷2期
【页码】 254-262 页,共 9 页
【作者】 Dabin ZHANG; Lean YU; Shouyang WANG; Haibin XIE;
【关键词】 turning points; business cycle; leading indicators; neural networks (NNs)

【摘要】
This paper examines the relevance of various financial and economic indicators in forecasting business cycle turning points using neural network (NN) models. A three-layer feed-forward neural network model is used to forecast turning points in the business cycle of China. The NN model uses 13 indicators of economic activity as inputs and produces the probability of a recession as its output. Different indicators are ranked in terms of their effectiveness of predicting recessions in China. Out-of-sample results show that some financial and economic indicators, such as steel output, M2, Pig iron yield, and the freight volume of the entire society are useful for predicting recession in China using neural networks. The asymmetry of business cycle can be verified using our NN method.
版权所有 © CALIS管理中心 2008