(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Effects of a dynamic membrane formed with polyethylene glycol on the ultrafiltration of natural organic matter
【刊名】 Frontiers of Environmental Science and Engineering in China
【刊名缩写】 Front.Environ.Sci.Engin.China
【ISSN】 1673-7415
【EISSN】 1673-7520
【DOI】 10.1007/s11783-010-0002-y
【出版社】 Higher Education Press and Springer-Verlag
【出版年】 2010
【卷期】 4 卷2期
【页码】 172-182 页,共 11 页
【作者】 Boksoon KWON; Noeon PARK; Jaeweon CHO;
【关键词】 dynamic membrane; natural organic matters; ultrafiltration membrane performance; effective PSD; effective molecular weight cutoff

【摘要】
The formation of a dynamic membrane (DM) was investigated using polyethylene glycol (PEG) (molecular weight of 35000 g/mol, concentration of 1 g/L). Two natural organic matters (NOM), Dongbok Lake NOM (DLNOM) and Suwannee River NOM (SRNOM) were used in the ultrafiltration experiments along with PEG. To evaluate the effects of the DM with PEG on ultrafiltration, various transport experiments were conducted, and the analyses of the NOM in the membrane feed and permeate were performed using high performance size exclusion chromatography, and the effective pore size distribution (effective PSD) and effective molecular weight cut off (effective MWCO) were determined. The advantages of DM formed with PEG can be summarized as follows: (1) PEG interferes with NOM transmission through the ultrafiltration membrane pores by increasing the retention coefficient of NOM in UF membranes, and (2) low removal of NOM by the DM is affected by external factors, such as pressure increases during UF membrane filtration, which decreases the effective PSD and effective MWCO of UF membranes. However, a disadvantage of the DM with PEG was severe flux decline; thus, one must be mindful of both the positive and negative influences of the DM when optimizing the UF performance of the membrane.
版权所有 © CALIS管理中心 2008