|

篇目详细内容 |
【篇名】 |
An institution theory of formal meta-modelling in graphically extended BNF |
【刊名】 |
Frontiers of Computer Science |
【刊名缩写】 |
Front. Comput. Sci. |
【ISSN】 |
2095-2228 |
【EISSN】 |
2095-2236 |
【DOI】 |
10.1007/s11704-012-2902-4 |
【出版社】 |
Higher Education Press and Springer-Verlag Berlin
Heidelberg |
【出版年】 |
2012 |
【卷期】 |
6
卷1期 |
【页码】 |
40-56
页,共
17
页 |
【作者】 |
Hong ZHU;
|
【关键词】 |
meta-modelling; modelling languages; abstract syntax; semantics; graphic extension of BNF (GEBNF); formal logic; institution |
【摘要】 |
Meta-modelling plays an important role in model driven software development. In this paper, a graphic extension of BNF (GEBNF) is proposed to define the abstract syntax of graphic modelling languages. From a GEBNF syntax definition, a formal predicate logic language can be induced so that meta-modelling can be performed formally by specifying a predicate on the domain of syntactically valid models. In this paper, we investigate the theoretical foundation of this meta-modelling approach. We formally define the semantics of GEBNF and its induced predicate logic languages, then apply Goguen and Burstall’s institution theory to prove that they form a sound and valid formal specification language for meta-modelling. |
|