(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Prediction of urban human mobility using large-scale taxi traces and its applications
【刊名】 Frontiers of Computer Science
【刊名缩写】 Front. Comput. Sci.
【ISSN】 2095-2228
【EISSN】 2095-2236
【DOI】 10.1007/s11704-011-1192-6
【出版社】 Higher Education Press and Springer-Verlag Berlin Heidelberg
【出版年】 2012
【卷期】 6 卷1期
【页码】 111-121 页,共 11 页
【作者】 Xiaolong LI; Gang PAN; Zhaohui WU; Guande QI; Shijian LI; Daqing ZHANG; Wangsheng ZHANG; Zonghui WANG;
【关键词】 urban traffic; GPS traces; hotspots; human mobility prediction; auto-regressive integrated moving average (ARIMA)

【摘要】
This paper investigates human mobility patterns in an urban taxi transportation system. This work focuses on predicting humanmobility fromdiscovering patterns of in the number of passenger pick-ups quantity (PUQ) from urban hotspots. This paper proposes an improved ARIMA based prediction method to forecast the spatial-temporal variation of passengers in a hotspot. Evaluation with a large-scale realworld data set of 4 000 taxis’ GPS traces over one year shows a prediction error of only 5.8%. We also explore the application of the prediction approach to help drivers find their next passengers. The simulation results using historical real-world data demonstrate that, with our guidance, drivers can reduce the time taken and distance travelled, to find their next passenger, by 37.1% and 6.4%, respectively.
版权所有 © CALIS管理中心 2008