(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Transcriptional regulators that differentially control dendrite and axon development
【刊名】 Frontiers in Biology
【刊名缩写】 Front. Biol.
【ISSN】 1674-7984
【EISSN】 1674-7992
【DOI】 10.1007/s11515-012-1234-y
【出版社】 Higher Education Press and Springer-Verlag Berlin Heidelberg
【出版年】 2012
【卷期】 7 卷4期
【页码】 292-296 页,共 5 页
【作者】 Xin WANG; Bing YE;
【关键词】 dendrite and axon commitment; Dar1; p300-SnoN; NeuroD

【摘要】
Neurons are the basic units of connectivity in the nervous system. As a signature feature, neurons form polarized structures: dendrites and axons, which integrate either sensory stimuli or inputs from upstream neurons and send outputs to target cells, respectively. The separation of dendritic and axonal compartments is achieved in two steps during development: 1) dendrite and axon specification: how neurites are initially specified as dendrites and axons; and 2) dendrite and axon commitment: how dendrites and axons are committed to distinct compartmental fates and architectures. To understand neural circuit assembly and to correct erroneous dendrite or axon growth in a compartment-specific manner, it is essential to understand the regulatory mechanisms underlying dendrite and axon commitment. Compared to extensive studies on dendrite and axon specification, little is known about the molecular mechanisms exclusively dedicated to dendrite or axon commitment. Recent studies have uncovered the requirement of transcriptional regulation in this process. Here, we review the studies on transcriptional regulators: Dar1, p300-SnoN, NeuroD, which have been shown to separate dendrite- and axon-specific growth of the same neuron type after compartmental fates are specified.
版权所有 © CALIS管理中心 2008