(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Immobilized Lentinus edodes residue as absorbent for the enhancement of cadmium adsorption performance
【刊名】 Frontiers of Environmental Science and Engineering
【刊名缩写】 Front.Environ.Sci.Eng.
【ISSN】 2095-2201
【EISSN】 2095-221X
【DOI】 10.1007/s11783-012-0429-4
【出版社】 Higher Education Press and Springer-Verlag Berlin Heidelberg
【出版年】 2012
【卷期】 6 卷4期
【页码】 498-508 页,共 11 页
【作者】 Pei MA; Dan ZHANG;
【关键词】 immobilization; Lentinus edodes residue; competitive adsorption; isotherm

【摘要】
To investigate the potential use of Lentinus edodes (L. edodes) residue for Cd2+ adsorption, poly alcohol Na alginate (PVA) was applied to immobilize it. The parameters including contact time, pH, adsorbent dosages, and coexisting metal ions were studied. The suitable pH for immobilized L. edodes was 4–7 wider than that for raw L. edodes (pH 6–7). In the presence of Pb2+ concentration varying from 0 to 30?mg·L?1, the Cd2+ adsorption ratios declined by 6.71% and 47.45% for immobilized and raw L. edodes, respectively. While, with the coexisting ion Cu2+ concentration varied from 0 to 30?mg·L?1, the Cd2+ adsorption ratios declined by 12.97% and 50.56% for immobilized and raw L. edodes, respectively. The Cd2+ adsorption isotherms in single–metal and dual-metal solutions were analyzed by using Langmuir, Freundlich, and Dubinin–Radushkevich models. The Cd2+ adsorption capacities (qm) in single-metal solution were 6.448?mg·L?1 and 2.832?mg·L?1 for immobilized and raw L. edodes, respectively. The qm of immobilized L. edodes were 1.850?mg Cd·g?1 in Cd2+ + Pb2+ solution and 3.961?mg Cd·g?1 in Cd2+ + Cu2+ solution, respectively. The Cd2+ adsorption processes subjected to both adsorbents follow pseudo-second-order model. Mechanism study showed the functional group of L. edodes was –OH, –NH, –CO, and PVA played an important role in metal adsorbing. Mining wastewater treatment test showed that PVA–SA-immobilized L. edodes was effective in mixed pollutant treatment even for wastewater containing metal ions in very low concentration.
版权所有 © CALIS管理中心 2008