(请使用IE浏览器访问本系统)

  学科分类

  基础科学

  工程技术

  生命科学

  人文社会科学

  其他

篇目详细内容

【篇名】 Response of bacterial communities to short-term pyrene exposure in red soil
【刊名】 Frontiers of Environmental Science and Engineering in China
【刊名缩写】 Front.Environ.Sci.Engin.China
【ISSN】 2095-2201
【EISSN】 2095-221X
【DOI】 10.1007/s11783-013-0501-8
【出版社】 Higher Education Press and Springer-Verlag Berlin Heidelberg
【出版年】 2013
【卷期】 7 卷4期
【页码】 559-567 页,共 9 页
【作者】 Jingjing PENG; Hong LI; Jianqiang SU; Qiufang ZHANG; Junpeng RUI; Chao CAI;
【关键词】 pyrene; bacterial communities; terminal restriction fragment length polymorphism; short-term exposure; rank-abundance plots

【摘要】
Pyrene, a representative polycyclic aromatic hydrocarbon (PAH) compound produced mainly from incomplete combustion of fossil fuels, is hazardous to ecosystem health. However, long-term exposure studies did not detect any significant effects of pyrene on soil microorganism. In this study, short-term microcosm experiments were conducted to identify the immediate effect of pyrene on soil bacterial communities. A freshly-collected pristine red soil was spiked with pyrene at 0, 10, 100, 200, and 500?mg·kg?1 and incubated for one day and seven days. The bacterial communities in the incubated soils were analyzed using 16S rRNA sequencing and terminal restriction fragment length polymorphism (T-RFLP) methods. The results revealed high bacterial diversity in both unspiked and pyrene-spiked soils. Only at the highest pyrene-spiking rate of 500?mg·kg?1, two minor bacteria groups of the identified 14 most abundant bacteria groups were completely suppressed. Short-term exposure to pyrene resulted in dominance of Proteobacteria in soil, followed by Acidobacteria, Firmutes, and Bacteroidetes. Our findings showed that bacterial community structure did respond to the presence of pyrene but recovered rapidly from the perturbation. The intensity of impact and the rate of recovery showed some pyrene dosage-dependent trends. Our results revealed that different levels of pyrene may affect the bacterial community structure by suppressing or selecting certain groups of bacteria. It was also found that the bacterial community was most susceptible to pyrene within one day of the chemical addition.
版权所有 © CALIS管理中心 2008